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Abstract. Large-scale optimization problems abound in data mining and machine
learning applications, and the computational challenges they pose are often addressed
through parallelization. We identify structural properties under which a convex opti-
mization problem can be massively parallelized via map-reduce operations using the
Frank-Wolfe (FW) algorithm. The class of problems that can be tackled this way is
quite broad and includes experimental design, AdaBoost, and projection to a convex
hull. Implementing FW via map-reduce eases parallelization and deployment via com-
mercial distributed computing frameworks. We demonstrate this by implementing FW
over Spark, an engine for parallel data processing, and establish that parallelization
through map-reduce yields significant performance improvements: we solve problems
with 20 million variables using 350 cores in 79 minutes; the same operation takes 48
hours when executed serially.
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1. Introduction

Map-reduce (Dean & Ghemawat 2008, Bialecki et al. 2005) is a distributed frame-
work used to massively parallelize computationally intensive tasks. It enjoys wide
deployment in commercial cloud services such as Amazon Web Services, Mi-
crosoft Azure, and Google Cloud, and is extensively used to parallelize a broad
array of data-intensive algorithms (Yang et al. 2007, Kumar et al. 2015, Bahmani
et al. 2012, Suri & Vassilvitskii 2011, Chu et al. 2006). Expressing algorithms
in map-reduce also allows fast deployment at a massive scale: any algorithm ex-
pressed in map-reduce operations can be quickly implemented and distributed on
a commercial cluster via existing programming frameworks (Dean & Ghemawat
2008, Bialecki et al. 2005, Zaharia et al. 2010).
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In this paper, we focus on solving, via map-reduce, optimization problems of
the form:

min
θ∈D0

F (θ), (1)

where F : RN → R is a convex, differentiable function, and

D0 ≡

{
θ ∈ RN

+ :

N∑
i=1

θi = 1

}
(2)

is the N -dimensional simplex. Several important problems, including experimen-
tal design, training SVMs, Adaboost, and projection to a convex hull indeed take
this form (Clarkson 2010, Bellet et al. 2015, Boyd & Vandenberghe 2004). We
are particularly interested in cases where (a) N ≫ 1, i.e., the problem is high-
dimensional, and, (b) F cannot be written as the sum of differentiable convex
functions. We note that, as described in Sec. 2, this is precisely the regime in
which (1) is hard to parallelize via, e.g., stochastic gradient descent.

It is well known that (1) admits an efficient implementation through the
Frank-Wolfe (FW) algorithm, also known as the conditional gradient algorithm
(Frank & Wolfe 1956). Indeed, as we discuss in Sec. 3.2, FW assumes a very
simple, elegant form under simplex constraints, and has important computational
advantages (Clarkson 2010, Jaggi 2013, Bellet et al. 2015). Our main contribution
is to identify and formalize a set of conditions under which solving Problem
(1) through FW admits a massively parallel implementation via map-reduce. In
particular:

• We identify two properties of the objective F under which FW can be paral-
lelized through map-reduce operations.

• We show that several important optimization problems, including experimen-
tal design, Adaboost, and projection to a convex hull satisfy the aforemen-
tioned properties.

• We implement our distributed FW algorithm on Spark (Zaharia et al. 2010),
an engine for large-scale distributed data processing. Our implementation is
generic: a developer using our code needs to only implement a few problem-
specific computational primitives; our code handles execution over a cluster.

• We extensively evaluate our Spark implementation over large synthetic and
real-life datasets, illustrating the speedup and scalability properties of our
algorithm. For example, using 350 compute cores, we can solve problems of 20
million variables in 79 minutes, an operation that would take 48 hours when
executed serially.

• We introduce two stochastic variants of distributed FW, in which we only
compute a subsample of the elements of the gradient. We implement these
algorithms on Spark and compare their performance with distributed FW.

The remainder of this paper is organized as follows. We briefly review related
work in Sec. 2, and introduce FW and the map-reduce framework in Sec. 3. In
Sec. 4, we state the properties under which FW admits a parallel implementation
via map-reduce, and describe the resulting algorithm. Examples of problems that
satisfy these properties are given in Sec. 5. We extend possible applications of
our algorithm on constraint sets beyond the simplex in Sec. 6. Finally, in Sec. 7
and 8 we describe our implementation and the results of our experiments over a
Spark cluster.
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2. Related Work

Frank-Wolfe (FW) (Frank & Wolfe 1956) has attracted interest recently due to
its numerous computational advantages (Dudik et al. 2012, Hazan & Kale 2012,
Ying & Li 2012, Joulin et al. 2014, Clarkson 2010, Jaggi 2013). It maintains fea-
sibility throughout execution while being projection-free, and minimizes a linear
objective in each step; the latter yields sparse solutions for several interesting
constraint sets, which often accelerates computation (Clarkson 2010, Bellet et al.
2015, Jaggi 2013).

Frank & Wolfe (1956) showed a convergence rate of O( 1ϵ ) for smooth objec-
tives. When the optimal solution lies at the boundary of the constraint set, FW
converges slowly, i.e., the O( 1ϵ ) convergence rate is tight (Dunn 1979, Canon &
Cullum 1968, Frank & Wolfe 1956, Jaggi 2013). This is because the iterations
of the classic FW zig-zag between the vertices defining the face that contain
the optimal solution. To avoid this zig-zagging phenomenon, Wolfe (1970) pro-
posed a variant using ‘away-points’; the basic idea is to move away from a ‘bad’
direction. Guélat & Marcotte (1986) analyzed this further, and showed a lin-
ear convergence rate on polytope constraint sets. Several recently proposed FW
variants improve the previous results for Away-steps Frank-Wolfe and attain lin-
ear convergence under weaker conditions (Beck & Shtern 2015, Garber & Hazan
2016, Lacoste-Julien & Jaggi 2015, Harchaoui et al. 2012, Garber & Meshi 2016).
The problems we consider do not satisfy these conditions, and these FW variants
are not readily parallelizable; we thus focus on classic FW in this paper.

A different line of work has tried to improve FW for problems with block-
separable constraints. Lacoste-Julien et al. (2013), proposed a random single-
block FW algorithm, in which only a single block of variables is updated. At
the expense of computing the duality gap, the convergence result was improved
(Osokin et al. 2016). Wang et al. (2016) devised the idea of updating multiple
blocks of variables in parallel, as randomized multiple-block FW, and Zhang
et al. (2017) further elaborated on this. The problems that we consider in this
work do not have a block-separable constraint, so we concentrate on classic FW.

Stochastic Gradient Descent (SGD) (Recht et al. 2011, Zinkevich et al. 2010,
Li et al. 2013, Abadi et al. 2016, Chu et al. 2006) parallelizes optimization prob-
lems in which the objective is the sum of differentiable functions. Many important
problems, including regression and classification, fall into this category, and SGD
has been tremendously successful at tackling them (Recht et al. 2011, Zinkevich
et al. 2010, Li et al. 2013, Abadi et al. 2016). SGD computes the contribution
of different terms to the gradient in parallel, and adapts the present solution in
a centralized fashion, often asynchronously. Stochastic Dual Coordinate Ascent
(SDCA) (Yang 2013) also solves problems with separable objectives by paral-
lelizing their dual.

The Alternating Directions Method of Multipliers (ADMM) (Boyd et al.
2011) applies to both separable and non-separable objectives, including LASSO
(c.f. Sec. 6). In general, the above methods do not readily generalize to the re-
maining optimization problems we study here. Moreover, their message complex-
ity increases with the number of variables; indeed, parallel SGD and ADMM over
millions of variables assume that each term depends only on a few coordinates
(Recht et al. 2011, Li et al. 2013, Boyd et al. 2011). We do not assume sum
objectives or any sparsity conditions here.

More recently, and more relevant to our work, Bellet et al. (2015) propose a
distributed version of FW for objectives of the form F (θ) = g(Aθ), for some A ∈
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θ N-dimensional variable
F Convex and differentiable function
∇F Gradient of F
D Convex and compact subset of RN

D0 The N -dimensional simplex set
γk Step-size at k-th iterations
X N × d matrix, which shows the dataset (N ≫ d).
p d-dimensional real vector, projected on convex hull of some points in Con-

vexApproximation
r d-dimensional binary vector, shows the ground truth labels in AdaBoost
α Tunable parameter in AdaBoost
tϵ The minimum time for an algorithm to obtain a solution within ϵ-

neighborhood of the optimum solution (23).

Table 1. Notation Summary: The table briefly describes the notations used
through the paper.

Rd×N , where d ≪ N . Several examples fall in this class, including two we study
here (convex approximation and Adaboost); intuitively, Aθ serves as the common
information in our framework (c.f. Sec. 4). The authors characterize the message
and parallel complexity when A is partitioned across multiple processors under
broadcast operations. Moreover, Tran et al. (2015) elaborated on their algorithm,
and proposed an asynchronous version of the distributed Frank-Wolfe algorithm
proposed by Bellet et al. (2015). It is based on their Stale Synchronous Parallel
(SSP) model (Tran et al. 2015). They showed that the SSP based algorithm runs
faster than the one based on a Bulk Synchronous Parallel (BSP) model, which is
commonly used in distributed processing frameworks. We (a) consider a broader
class of problems, that do not abide by the structure presumed by Bellet et al or
Tran et al.. (e.g., the two experimental design problems presented in Sec. 5), and
(b) establish properties under which FW can be explicitly parallelized through
map-reduce rather than the message passing environment proposed by Bellet
et al. This allows us to leverage commercial map-reduce frameworks to readily
implement and deploy parallel FW on a cluster.

Stochastic variants of FW have been proposed recently (Hazan & Kale 2012,
Lan & Zhou 2016, Hazan & Luo 2016, Reddi et al. 2016), using unbiased esti-
mates of the gradient at each step. Hazan & Luo (2016) improve upon earlier
convergence rates (Hazan & Kale 2012, Lan & Zhou 2016) when the objective is
smooth, strongly convex, or Lipschitz. Reddi et al. (2016) extend these results to
non-convex functions for which FW converges to a stationary point. We imple-
ment two stochastic FW variants based on gradient subsampling, and compare
the relative performance of subsampling to increasing parallelism in Sec. 8.

3. Technical Preliminary

3.1. Frank-Wolfe Algorithm

The FW algorithm (Frank & Wolfe 1956), summarized in Alg. 1, solves problems
of the form:

Minimize F (θ) (3a)

subj. to: θ ∈ D, (3b)
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where F : RN → R is a convex function and D is a convex compact subset of RN .
The algorithm selects an initial feasible point θ0 ∈ D and proceeds as follows:

sk = arg min
s∈D

s⊤ · ∇F (θk), (4a)

θk+1 = (1− γk)θk + γksk, (4b)

for k ∈ N, where γk ∈ [0, 1] is the step size. At each iteration k ∈ N, FW finds
a feasible point sk minimizing the inner product with the current gradient, and
interpolates between this point and the present solution. Note that θk+1 ∈ D,
as a convex combination of θk, sk ∈ D; therefore, the algorithm maintains feasi-
bility throughout its execution. Steps (4a),(4b) are repeated until a convergence
criterion is met; we describe how to set this criterion and the step size γk below.
Convergence criterion. Convergence is typically determined in terms of the
duality gap (Jaggi 2013). The duality gap at feasible point θk ∈ D in iteration
k ∈ N is:

g(θk) ≡ max
s∈D

(θk − s)⊤∇F (θk)
(4a)
= (θk − sk)T∇F (θk), (5)

The convexity of F implies that F (θk)−F (θ∗) ≤ g(θk) for any optimal solution
θ∗ ∈ arg minθ∈D F (θ) (Jaggi 2013). In other words, g(θ) is an upper bound on
the objective value error at step k. The algorithm, therefore, terminates once the
duality gap is smaller than some ϵ > 0.
Step Size. The step size can be diminishing, e.g., γk = 2

k+2 , or set through line
minimization, i.e.:

γk = arg min
γ∈[0,1]

F
(
(1− γ)θk + γsk

)
. (6)

Convergence to an optimal solution is guaranteed in both cases for problems
in which the objective has a bounded curvature (Frank & Wolfe 1956, Jaggi
2013). In this case, both of the above step sizes imply that the k-th iteration
of the Frank-Wolfe algorithm satisfies F (θk) − F (θ∗) ≤ O( 1k ) (Jaggi 2013). For
arbitrary convex objectives with unbounded curvature, FW still converges if the
step size is set by the line minimization rule (Bertsekas 1999).

3.2. Frank-Wolfe Over the Simplex

We focus on FW for the special case where the feasible set D is the simplex
D0, given by (2). As described in Section 5, this set of constraints arises in
many problems, including training SVMs, convex approximation, Adaboost, and
experimental design (see also (Clarkson 2010)). Under this set of constraints, the
linear optimization problem in (4a) has a simple solution: it reduces to finding
the minimum element of the gradient ∇F (θk). Formally, for [N ] ≡ {1, 2, . . . , N},
and {ei}i∈[N ] the standard basis of RN , (4a) reduces to:

sk = ei∗ , where i∗ ∈ arg mini∈[N ]
∂F (θk)
∂θi

. (7)

Note that sk is a vector in the standard basis of RN , for all k ∈ N: as such, it is
extremely sparse, having only one non-zero element. The sparsity of sk plays a
role in producing our efficient, distributed implementation, as discussed below.
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Algorithm 1 Frank-Wolfe

1: Pick θ0 ∈ D
2: k := 0
3: repeat
4: sk := arg mins∈D s⊤ · ∇F (θk)
5: gap := (θk − sk)⊤∇F (θk)
6: θk+1 := (1− γk)θk + γksk

7: k := k + 1
8: until gap < ϵ

3.3. Map-Reduce Framework

Consider a data structure D ∈ XN comprising N elements di ∈ X , i ∈ [N ], for
some domain X . A map operation over D applies a function to every element of
the data structure. That is, given f : X → X ′, the operation D′ = D.map(f)
creates a data structure D′ in which every element di, i ∈ [N ], is replaced with
f(di). A reduce operation performs an aggregation over the data structure, e.g.,
computing the sum of the data structure’s elements. Formally, let ⊕ be a binary
operator ⊕ : X × X → X that is commutative and associative, i.e.,

x⊕ y = y ⊕ x, and ((x⊕ y)⊕ z) = (x⊕ (y ⊕ z)).

Then, D.reduce(⊕) iteratively applies the binary operator ⊕ on D, returning⨁
i∈[N ] di = d1 ⊕ . . . ⊕ dN . Examples of commutative, associative operators ⊕

include addition (+), the min and max operators, binary AND, OR, and XOR,
etc.

Both map and reduce operations are “embarrassingly parallel”. Presuming
that the data structure D is distributed over P processors, a map can be executed
without any communication among processors, other than the one required to
broadcast the code that executes f . Such broadcasts require only logP rounds
and the transmission of P − 1 messages, when the P processors are connected in
a hypercube network; the same is true for reduce operations (Leighton 2014).
There exist several computational frameworks, including Hadoop (Bialecki et al.
2005) and Spark (Zaharia et al. 2010), that readily implement and parallelize
map-reduce operations. Hence, expressing an algorithm like FW in terms of map
and reduce operations allows us to (a) parallelize the algorithm in a straightfor-
ward manner, and (b) leverage these existing frameworks to quickly implement
and deploy FW at scale.

4. Frank-Wolfe via Map-Reduce

4.1. Gradient Computation through Common Information

In this section, we identify two properties of function F under which FW over
the simplex D0 admits a distributed implementation through map-reduce. Intu-
itively, our approach exploits an additional structure exhibited by several impor-
tant practical problems: the objective function F often depends on the variables
θ as well as a dataset, given as input to the problem. We represent this dataset
through a matrix X = [xi]i∈[N ] ∈ RN×d whose rows are vectors xi ∈ Rd, i ∈ [N ].
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The dataset can be large, as N ≫ 1; as such, X may be horizontally (i.e., row-
wise) partitioned over multiple processors. Note here that the dataset size (N)
equals the number of variables in F .

We assume that the dependence of F to the dataset X is governed by two
properties. The first property asserts that the partial derivative ∂F

∂θi
for any

i ∈ [N ] depends on (a) the variable θi, (b) a datapoint xi in the dataset, as well
as (c) some common information h. This common information, not depending
on i, fully abstracts any additional effect that θ and X may have on partial
derivative ∂F

∂θi
. Our second property asserts that this common information is

easy to update: as variables θk are adapted according to the FW algorithm (4),
the corresponding common information h can be re-computed efficiently, through
a computation that does not depend on N . More formally, we assume that the
following two properties hold:

Property 1. There exists a matrix X = [xi]i∈[N ] ∈ RN×d, whose rows are

vectors xi ∈ Rd, i ∈ [N ], such that for all i ∈ [N ]:

∂F (θ)
∂θi

= G(h(X; θ), xi, θi), (8)

for some

h : RN×d × RN → Rm,

and

G : Rm × Rd × R → R,

where m, d ≪ N .

We refer to h as the common information and to G as the gradient function.
When X ∈ Rd×N is partitioned over multiple processors, Prop. 1 implies that
a processor having access to θi, xi, and the common information h(X; θ) can
compute the partial derivative ∂F

∂θi
. No further information on other variables or

datapoints is required other than h. Moreover, computing G is efficient, as its
inputs are variables of size m, d ≪ N .

Recall from (4) and (7) that, when the constraint set is the simplex, adapta-
tions to θk take the form:

θk+1 = (1− γk)θk + γei∗ , where i∗ ∈ arg mini∈[N ]
∂F (θk)
∂θi

.

Our second property asserts that when θk is adapted thusly, the common infor-
mation h can be easily updated, rather than re-computed from scratch from X
and θk+1:

Property 2. Let D = D0. Given h(X; θk), the common information at iteration
k of the FW algorithm, the common information h(X; θk+1) at iteration k + 1
is:

h(X; θk+1) = H(h(X; θk), xi∗ , θ
k
i∗ , γ

k), (9)

for some

H : Rm × Rd × R× R → Rm,

where i∗ ∈ arg mini∈[N ]
∂F (θk)
∂θi

.
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Prop. 2, therefore, implies that a machine having access to xi∗ , θki∗ , γk, and
the common information h(X; θk) in the last iteration can compute the new
common information h(X; θk+1). Again, no additional knowledge of X or θk is
required. Moreover, similar to the computation of G in Prop. 1, this computation
is efficient, as it again only depends on variables of size m, d ≪ N . As we will see,
in establishing that Prop. 2 holds for different problems, we leverage the sparsity
of sk at iteration k ∈ N, as induced by (7): the fact that θk is interpolated with
vector ei∗ , containing only a single non-zero coordinate, is precisely the reason
why the common information can be updated efficiently.
Example: For the sake of concreteness, we give an example of an optimization
problem over the simplex that satisfies Properties 1 and 2, namely, ConvexAp-
proximation; additional examples are presented in Section 5. Given a point
p ∈ Rd and N vectors xi ∈ Rd, i ∈ [N ], the goal of ConvexApproximation is
to find the projection of p on the convex hull of set {xi | i ∈ [N ]}. This can be
formulated as:

ConvexApproximation
Minimize F (θ) = ∥XT θ − p∥22 (10a)

subj. to: θ ∈ D0, (10b)

where X = [xi]i∈[N ] ∈ RN×d. ConvexApproximation satisfies Prop. 1 as

∂F (θ)

∂θi
= 2xT

i (X
T θ − p) = G(h(X; θ), xi),

i ∈ [N ], where common information h : RN×d × RN → Rd is

h(X; θ) = XT θ − p, (11)

and gradient function G : Rd × Rd → R is

G(h, x) = 2xTh.

Prop. 1 thus holds when d ≪ N . Prop. 2 also holds because, under (4) and (7),
the common information at step k + 1 is:

h(X; θk+1) = (1− γk)h(X; θk) + γk(xi∗ − p)

= H(h(X; θk), xi∗ , γ
k),

where H : Rd × Rd × R → Rd is given by

H(h, x, γ)=(1− γ)h+γ(x− p).

Note that, in this problem, m = d ≪ N . Moreover, given their arguments,
functions G and H can be computed in O(d) time (i.e., their complexity does
not depend on N ≫ 1).

4.2. A Serial Algorithm

Before describing our parallel version of FW, we first discuss how it can be
implemented serially when Properties 1 and 2 hold. The main steps are outlined
in Alg. 2. Beyond picking an initial feasible point, the algorithm computes the
initial value of the common information h. At each iteration of the for loop, the
algorithm computes the gradient ∇F using the present common information,
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Algorithm 2 Serial FW under Properties 1 and 2

1: Pick θ0 ∈ D
2: h := h(X; θ0)
3: k := 0
4: repeat
5: for each i ∈ [N ] do
6: zi := G(h, xi, θi)
7: end for
8: Find i∗ := arg mini∈[N ] zi
9: gap := (θk − ei∗)

⊤z
10: θk+1 := (1− γk)θk + γkei∗
11: h := H(h, xi∗ , θ

k
i∗ , γ

k).
12: k := k + 1
13: until gap < ϵ

and updates both θk and the common information h to be used in the next
step. It is easy to see that all steps in the main loop of Alg. 2 that involve
computations depending on N (namely, Lines 5–10) can be parallelized through
map-reduce operations, when X and θ are distributed over multiple processors.
We describe this in detail in the next section; crucially, the adaptation of the
common information h (Line 11) does not depend on N , and can, therefore, be
performed efficiently in one processor.

We note here that exploiting Properties 1 and 2 has efficiency advantages
even in serial execution. In general, the complexity of computing the gradient
∇F as a function of θ ∈ RN may be quadratic in N , or higher, as each partial
derivative ∂F

∂θi
, i ∈ [N ], is a function of N variables. Instead, Properties 1 and 2

imply that the complexity of computing the gradient ∇F at each iteration of (4)
is O(N): this is the complexity when the common information is adapted through
H and used to compute new partial derivatives through the gradient function G.
For example, in the case of ConvexApproximation, the complexity is O(Nd).
As we show in Section 8, this leads to a significant speedup, allowing Alg. 2 to
outperform interior-point methods even when executed serially.

4.3. Parallelization Through Map-Reduce

We now outline how to parallelize Alg. 2 through map-reduce operations. The
algorithm is summarized in Alg. 3, where we use the notation x ↦→ f(x) and
x, y ↦→ g(x, y), to indicate a unitary function f and a binary function g, re-
spectively. The main data structure D contains tuples of the form (i, xi, θ

k
i ), for

i ∈ [N ], partitioned and distributed over P processors. A master processor exe-
cutes the map-reduce code in Alg. 3, keeping track of the common information
h and the duality gap at each step. A reduce returns the computed value to
the master, while a map constructs a new data structure distributed over the P
processors.

Each step in the main loop of Alg. 2 has a corresponding map-reduce imple-
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Algorithm 3 FW via Map-Reduce

1: Pick θ0 ∈ D
2: Compute h := h(X; θ0)
3: Let D := {(i, xi, θ

0
i )}i∈[N ]

4: Distribute D over P processors
5: k := 0
6: repeat
7: D′ = D.map

(
(i, xi, θi) ↦→ (i, xi, θi, G(h, xi, θi)

)
8: (i∗,xi∗ ,θi∗ ,zi∗ ) := D′.reduce

(
(i,xi,θi,zi),(i

′,xi′ ,θi′ ,zi′ ) ↦→
{
(i,xi,θi,zi) if zi<zi′

(i′,xi′ ,θi′ ,zi′ )if zi≥zi′

)

9: gap := D′.map

(
(i,xi,θi,zi) ↦→

{
θi · zi if i ̸= i∗

(θi − 1) · zi if i = i∗

)
.reduce(+)

10: D := D.map

(
(i, xi, θi) ↦→

{
(i,xi,(1− γk)θi) if i ̸= i∗

(i,xi,(1− γk)θi + γk) if i = i∗

)
11: h := H(h, xi∗ , θi∗ , γ

k).
12: k := k + 1
13: until gap < ϵ

mentation in Alg. 3. In the main loop, a simple map using function G appends

zi =
∂F (ℓk)

∂θi

to every tuple in D, yielding D′ (Line 7 in Alg. 3). A reduce on D′ (Line 8)
computes a tuple (i∗, xi∗ , θi∗ , zi∗), for i

∗ ∈ arg mini∈[N ] zi. Similarly, a map and

a reduce on D′ (a summation) yields the duality gap (Line 9), while a map
adapts the present solution θ in data structure D (Line 10). Finally, the common
information h is adapted centrally at the master node (Line 11), as in Alg. 2.
Message and Parallel Complexity. The reduce in Line 8 requires logP par-
allel rounds, involving P − 1 messages of size O(d) (Leighton 2014). Computing
the gradient in parallel through a map in Line 7 requires knowledge of the com-
mon information at each processor. Hence, in the beginning of each iteration,
h is broadcast to the P processors over which D is distributed: this again re-
quires in logP rounds and P −1 messages. Note that the corresponding message
has size O(m), that does not depend on N . Similarly, the reductions in Lines 9
and 10 require broadcasting i∗, which has size O(1). In practice, such variables
are typically shipped to the processors by the master along with the code of the
function or operator to be executed by the corresponding map or reduce. The
operations in Lines 7–10 thus require logP parallel rounds and the transmission
of O(P ) messages of size O(m+ d).

4.4. Selecting the step size.

Our exposition so far assumes that the step size γk is computed at the master
node before updating D and h. This is certainly the case if, e.g.,

γk =
2

k + 2
,

but it does not readily follow when the line minimization rule (6) is used. Never-
theless, all problems we consider here, including ConvexApproximation, sat-
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Problems F (θ) m G compl. H compl.

Convex Approximation ∥Xθ − p∥22 d O(d) O(d)

Adaboost log
(∑d

j=1 exp(αcjrj)
)

d O(d) O(d)

D-optimal Design − log detA(θ) d2 O(d2) O(d2)
A-optimal Design trace

(
A−1(θ)

)
2d2 O(d2) O(d2)

Table 2. Examples of problems satisfying Prop. 1–3. As we see time complexity
of computing G and H functions are independent of N .

isfy an additional property that ensures that (6) can also be computed efficiently
in a centralized fashion:

Property 3. There exists an F̂ : Rm → R such that F (θ) = F̂ (h(X; θ)) .

Prop. 3 implies that line minimization (6) at iteration k is:

γk = arg minγ∈[0,1] F̂
(
h(X; (1− γ)θk + γei∗)

)
. (12)

The argument of F̂ is the updated common information hk+1 under step size γ.
Hence, using Prop. 2, Eq. (12) becomes:

γk = arg minγ∈[0,1] F̂
(
H(h, xi∗ , θ

k
i∗ , γ)

)
, (13)

where h is the present common information. As F is convex in θk, it is also convex
in γ, so (13) is also a convex optimization problem. Crucially, (13) depends on
the full dataset X and the full variable θ only through h. Therefore, the master
processor (having access to xi∗ , θ

k
i∗ , γ, and h) can find the step size via standard

convex optimization techniques solving (13). In fact, for several of the problems
we consider here, line minimization has a closed form solution; for example, for
ConvexApproximation, the optimal step size is given by:

γk = h⊤h−(xi∗−p)⊤h
(xi∗−p)⊤(xi∗−p)+h⊤h−2(xi∗−p)⊤h

.

Though all problems we study, listed in Table 2, satisfy Prop. 1, 2, as well as
3, we stress again that Prop. 3 is not strictly necessary to parallelize FW, as a
parallel implementation can always resort to a diminishing step size.

5. Examples

We provide several examples of problems that satisfy Prop. 1, 2, and 3; a sum-
mary is given in Table 2.
Experimental Design: In experimental design, a learner wishes to regress a
linear model β ∈ Rd from input data (xi, yi) ∈ Rd × R, i ∈ [N ], where

yi = β⊤xi + ϵi,

for ϵi, i ∈ [N ], i.i.d. noise variables. The learner has access to features xi, i ∈
[N ], and wishes to determine which labels yi to collect (i.e., which experiments
to conduct) to accurately estimate β. This problem can be posed as (Boyd &
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Vandenberghe 2004):

minθ∈D0 f

((∑N
i=1 θixix

⊤
i

)−1
)
, (14)

where θi indicates the portion of experiments conducted by the learner with
feature xi. The quantity

A(X; θ) =

N∑
i=1

θixix
⊤
i

is the design matrix of the experiment. For brevity, we represent A(X; θ) as A(θ)
below. Different choices of f : Rd×d → R lead to different optimality criteria; we
review two below.
D-Optimal Design: In D-Optimal design f is the log-determinant, and (14) be-
comes:

D-OptimalDesign

Minimize F (θ) = logdet
(∑N

i=1 θixix
⊤
i

)−1

(15a)

subj. to: θ ∈ D0, (15b)

D-OptimalDesign satisfies Prop. 1 as:

∂F
∂θi

= −x⊤
i A

−1(θ)xi = G(h(X, θ), xi), for all i ∈ [N ],

where the common information h : RN×d × RN → Rd×d is

h(X; θ) = A−1(θ),

and the gradient function G : Rd×d × Rd → R, is given by

G(h, x) = −x⊤hx.

Hence, Prop. 1 holds when d2 ≪ N . Using the Sherman-Morrison formula (Sher-
man & Morrison 1950) we can show that the common information at step k+ 1
is:

A−1(θk+1) = A−1(θk)
1−γ −

γ

(1−γ)2
A−1(θk)xi∗x

⊤
i∗A

−1(θk)

1+ γ
1−γ x⊤

i∗A
−1(θk)xi∗

. (16)

As a result, h(X; θk+1)= H(h(X, θk), xi∗ , γ), where H : Rd×d ×Rd ×R → Rd×d

is:

H(h, x, γ)= h
1−γ −

γ

(1−γ)2
hxx⊤h

1+ γ
1−γ x⊤hx

. (17)

Therefore, Prop. 2 also holds. Note that, in this problem, m = d2 ≪ N . Func-
tions G and H include only matrix-to-vector and vector-to-vector multiplica-
tions; hence, given their arguments, they can be computed in O(d2) time.
A-Optimal Design: In A-Optimal design f is the trace:

A-OptimalDesign

Minimize F (θ) = Tr
(
A−1(θ)

)
(18a)

subj. to: θ ∈ D0. (18b)
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The partial derivative of the F can be written as:

∂F
∂θi

= −x⊤
i A

−2(θ)xi = G(h(X; θ), xi), for all i ∈ [N ].

where the common information h : RN×d × RN → Rd×d × Rd×d is h(X; θ) =
(h1, h2), where

h1 = A−1(θ)

and

h2 = A−2(θ).

The gradient function G : Rd×d × Rd → R is

G((h1, h2), x) = −x⊤h2x.

Hence, Property 1 holds when d2 ≪ N . The common information at step k + 1
is (

A−1(θk+1), A−2(θk+1)
)
.

The first term can be computed as in (16). The second term is the square of the
first term; expanding it gives a formula in terms of A−1(θk) and A−2(θk). More
formally, the common information at iteration k + 1 can be written as:

h(X; θk+1) = (hk+1
1 , hk+1

2 ) = H(h(X; θk), xi∗ , γ),

where

H((h1, h2), x, γ),= (H1(h1, x, γ), H2(h1, h2, x, γ)),

and function H1 is given by (17), while H2 : Rd×d × Rd×d × Rd × R → Rd×d is:

H2(h1,h2,x,γ)=
h2

(1−γ)2
−

γ

(1−γ)3
h2xx⊤h1

1+
γ

1−γ
x⊤h1xi

−
γ

(1−γ)3
h1xx⊤h2

1+
γ

1−γ
x⊤h1

+

γ2

(1−γ)4
x⊤h2xh1xx⊤h2

(1+
γ

1−γ
x⊤h1x)2

.

This illustrates why common information includes both A−1(θk) and A−2(θk):
adapting the latter requires knowledge of both quantities. Note also that m =
2d2 ≪ N . Functions G and H again only require matrix-to-vector and vector-
to-vector multiplications and, hence, can be computed in O(d2) time.
AdaBoost: Assume that N classifiers and ground-truth labels for d data
points are given. The classification result is represented by a binary matrix
X ∈ {−1,+1}N×d, where xij is the label generated by the i-th classifier for
the j-th data point. The true classification labels are given by a binary vector
r ∈ {−1,+1}d. The goal of Adaboost is to find a linear combination of classifiers,
defined as:

c(X, θ) = X⊤θ,

such that the mismatch between the new classifiers and ground-truth labels is
minimized. The problem can be formulated as:

AdaBoost

Minimize F (θ) = log
(∑d

j=1 exp(−αcj(X, θ)rj)
)

(19a)

subj. to: θ ∈ D0, (19b)

where rj and cj are, respectively, the j th element of the r and c vectors, and
α ∈ R is a tunable parameter.
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Again, (19) satisfies Prop. 1 as:

∂F (θ)

∂θi
= −x⊤

i b = G(h(X; θ), xi), for all i ∈ [N ],

where b ∈ Rd is a vector, whose elements are

bj =
αrj exp (−αcjrj)∑d
i=1 exp(−αcjrj)

, for all j ∈ [d].

The common information, h : RN×d × RN → Rd is

h(X; θ) = [exp−αcjrj ]j∈[d] ,

and the gradient function G : Rd × Rd → R is

G(h, x) = x⊤ĥ,

where

ĥ =

[
αrjhj∑d
i=1 hi

]
j∈[d]

.

Hence, Prop. 1 holds when d ≪ N . Prop. 2 also holds because, under (4) and
(7), the common information at step k + 1 is

h(X; θk+1) = H(h(X, θk), xi∗ , γ),

where H : Rd × Rd × R → Rd is given by

H(h, xi, γ) =
[
h
(1−γ)
j exp(−γαxjirj)

]
j∈[d]

.

In this problem, m = d ≪ N and functions G and H can be computed in O(d)
time.
Serial Solvers: All four problems in Table 2 are convex, and some admit special-
ized solvers. A-OptimalDesign can be reduced to a semidefinite program, (see
Sec. 7.5 of (Boyd & Vandenberghe 2004)), and solved as an SDP. AdaBoost can
be expressed as a geometric program (GP) (Clarkson 2010), and ConvexAp-
proximation is a quadratic program (QP). D-OptimalDesign is a general
convex optimization problem, and can be solved by standard techniques such as,
e.g., barrier methods. In Sec. 8 we compare FW to the above specialized solvers,
and we see that it outperforms them in all cases.

6. Extensions

Our proposed distributed Frank-Wolfe algorithm can be extended to a more
general class of problems, with constraints beyond the simplex.
ℓ1−constraint: The ℓ1 (or lasso) constraint

∥θ∥1 ≤ K

appears in many optimization problems as means of enforcing sparsity (Ng 2004,
Tibshirani 1996). For this constraint, adaptation (4b) becomes:

sk = σi∗ei∗ , where i∗ = arg maxi∈[N ]

⏐⏐⏐ ∂f
∂θi

⏐⏐⏐ , (20)
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and

σi∗ = −Ksign(
∂f

∂θi∗
).

Eq. (20) can be computed in parallel through a reduce. The adaptation step
of γk is slightly different from the simplex case, as we interpolate between θk a
scaled basis vector σi∗ei∗ .

As an example, consider the LASSO problem (Tibshirani 1996):

minθ:∥θ∥1≤K ∥X⊤θ − p∥22. (21)

Here, θ ∈ RN is the vector of weights,X ∈ RN×d is the matrix of N−dimensional
features for d datapoints, and p ∈ Rd is the observed outputs. Note that LASSO
has exactly the same objective as ConvexApproximation, so the common
information from (11) is h(X; θ) = XT θ − p. The common information can be
updated as

h(X; θk+1) = (1− γk)h(X; θk) + γk(σi∗xi∗ − p),

i.e., it is a function of h(X; θk) and the usual “local” information at i∗, now
including also σi∗ .
Atomic Norms: More generally, consider the problem

min
θ:∥θ∥A≤K

f(θ),

where ∥x∥A denotes the atomic norm: given a set of atoms A = {ai ∈ RN} the
atomic norm is defined as

∥x∥A = inf{t ≥ 0 : x ∈ tCA},

where CA is the convex hull of the atoms. Atomic norms are used to encourage
solutions that have a low-dimensional structure, modelled as a linear combination
of only few atoms (Shah et al. 2012, Chen & Banerjee 2015, Chandrasekaran et al.
2012, Tewari et al. 2011). Tewari et al. (Tewari et al. 2011) propose an FW-like
algorithm for this class of problems. In this algorithm, the step 4 of Alg. 1 is
replaced by

sk = arg mina∈A a⊤ · ∇F (θk). (22)

Then, the new solution is convex combination of the current solution and Ksk,
similar to FW Algorithm.

Our approach can be extended to problems of this form, where the set A
comprises atoms {±αiei}, where αi > 0 s are arbitrary scalars. Eq. (22) becomes

sk = −αi∗sign(
∂f

∂θi∗
)ei∗ ,

where

i∗ = arg max
i∈[N ]

|αi
∂f

∂θi
|.

This can be implemented through a reduce, and adaptation is slightly different
from the simplex case as again sk is a scaled basis vector. An appropriate variant
of Prop. 2, should hold w.r.t. this adaptation step.
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7. Implementation

We implemented Alg. 3 over Spark, an open-source cluster-computing framework
(Zaharia et al. 2010). Spark inherently supports map-reduce operations, and is
well-suited for parallelizing iterative algorithms; this is because results of map-
reduce operations can be cached in RAM, over multiple machines, and accessed
in the next iteration of the algorithm (Zaharia et al. 2010).

Our FW implementation is generic, relying on an abstract class. A developer
only needs to implement three methods in this class: (a) the gradient function
G, (b) the common information function h, and (c) the common information
adaptation function H. Once these functions are implemented, our code takes
care of executing Alg. 3 in its entirety, and distributes its execution over a Spark
cluster. Our implementation, which is publicly available,1 can thus be used to
solve arbitrary problems that satisfy Prop. 1 and 2, and quickly deploy and
parallelize their execution over a Spark cluster. We have also instantiated this
class for the problems summarized in Table 2 and used it in our experiments.

8. Experiments

8.1. Experiment Setup

Cluster. Our cluster comprises 8 worker machines. Each worker has 2 Intel(R)
Xeon(R) CPUs (E5-2680 v4) with 2.4GHz clock speed and 14 cores, at 28 cores
in total. Moreover, each core supports hyper-threading; as a result, each physical
core appears as two logical cores to the operating system. Therefore, each worker
has

2CPU× 14
cores

CPU
× 2

threads

core
= 56 threads (virtual cores),

and the cluster has 8 × 56 = 448 (virtual) cores in total. Thus, the maximum
level of parallelism for our cluster is 448. Also, each worker has 529 GB of RAM,
32KB L1 cache for instruction and data, 256KB for L2 cache, and 35.84MB
for L3 cache. The cluster has 4TB of RAM in total. All code is implemented
in Python (v2.7.5) and Spark (v1.4.1); we also use python’s CVXOPT module
(v1.1.8).
Algorithms. We solve Convex Approximation, Adaboost, D-Optimal Design,
and A-Optimal Design summarized in Table 2, as well as LASSO (c.f. Sec. 6).
We implement both serial and parallel solvers. First, we implement Serial FW
(Alg. 2) in Python, setting γ using the line minimization rule (6). In addition,
we solve Convex Approximation, D-Optimal Design, A-Optimal Design, and Ad-
aboost using CVXOPT solvers, qp, cp, sdp, and gp, respectively. CVXOPT is
a software package for convex optimization based on the Python programming
language.2 Beyond Serial FW and using CVXOPT solvers, we also implement a
third, näıve serial algorithm in which the gradient is computed from scratch at
each iteration, not exploiting the common information introduced in Prop. 1 and
2 (as Serial FW does). We call this implementation Oracle FW, as it computes
the gradient via a “function oracle”. We also implement our parallel algorithm

1 https://github.com/neu-spiral/FrankWolfe
2 cvxopt.org

https://github.com/neu-spiral/FrankWolfe
cvxopt.org
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(Alg. 3) using our Spark generic implementation. We again set the step size us-
ing the line minimization rule (6). We refer to this algorithm as Parallel FW.
We control the level of parallelism, i.e., the number of cores P , by either setting
the number of partitions of Spark resilient distributed datasets (RDDs) to P
or by controlling the total-executor-cores in Spark’s configuration and using
a fixed high number of partitions, e.g., 600. We use the former approach when
dealing with smaller datasets and the latter for larger datasets, as maintaining
a large number of small partitions (executed serially) avoids memory crashes
in Spark. We also introduce two stochastic parallel variants that subsample the
gradient; we discuss these in Section 8.4. Finally, we also implement distributed
ADMM for the LASSO problem, as described in Section 8.3 of (Boyd et al. 2011).
Synthetic Data. For D-optimal Design, A-optimal Design, Convex Approxima-
tion, and LASSO, the synthetic data has the form of a matrix X ∈ RN×d. The
point p in Convex Approximation is a vector p ∈ Rd. The elements of X and p
are sampled independently from a uniform distribution in [0, 1]. For Adaboost,
input data is given by a binary matrix X ∈ {−1,+1}N×d and ground-truth la-
bels are represented by a binary vector r ∈ {−1,+1}d. The elements of r are
sampled independently from a Bernoulli distribution with parameter 0.5. Then
each row of X is generated from r as follows: each element xij is equal to rj
with probability 0.7, and it is equal to −rj with probability 0.3. For LASSO, the
observed outputs are denoted by a vector p ∈ Rd, which is generated as follows:
a sparse vector θ∗ ∈ RN is sampled from a uniform distribution in [0,1], s.t.,
only 1 percent of its elements are non-zero. Then the vector p is synthesized as
p = X⊤θ∗ + ϵ, where ϵ ∈ Rd is the noise vector, and its elements are sampled
from a uniform distribution in [0, 0.01]. We create three synthetic datasets with
different values of N and d, summarized in Tables 3–5.
Real Data. We also experiment with 4 real datasets, summarized in Table 6.
The first dataset is Movielens (Harper & Konstan 2015). This includes 20,000,263
ratings for 27,278 movies generated by 138,493 users. We have kept the top 500
most-rated movies, resulting in 413,304 ratings, rated by 137,768 users. We have
represented the data as a matrix X ∈ RN×d with N = 137768 and d = 500,
so that xij indicates the rating of user i for movie j. Missing entries are set to
zero. The second dataset is a high-energy physics dataset, HEPMASS (Lichman
2013). The dataset has 106 data points and 28 features. We represent it as a ma-
trix with N = 106 and d = 28. The third dataset is the MSD dataset (Lichman
2013), which comprises 515345 songs with 90 features. We represent it as a ma-
trix with N = 515345 and d = 90. The fourth dataset is from Yahoo Webscope.3

It represents a snapshot of the Yahoo! Music community’s preferences for various
songs. We used the test section of the dataset, which contains 18,231,790 ratings
of 136,735 songs by over 1.8M users. We find the 100-dimensional latent vec-
tors via matrix factorization technique (Koren et al. 2009), using the parameters
µ = 0.001 and λ = 0.001. We represent the latent vectors corresponding to users
as a matrix X ∈ RN×d with N = 1, 823, 179 (number of users) and d = 100. We
refer to this dataset as YAHOO dataset. When solving Convex Approximation
problem for the YAHOO dataset, the vector p ∈ R100 is generated as follows.
An arbitrary point from the dataset xi is chosen, then it is corrupted by noise:
p = xi + ϵ, where the elements of ϵ ∈ R100 are sampled independently form a
uniform distribution in [0, 0.1]. Finally, the point xi is removed from the dataset.

3 https://webscope.sandbox.yahoo.com

https://webscope.sandbox.yahoo.com
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Problem N d algs

Conv. Approx. 5000 20 qp
Adaboost 5000 100 gp

D-opt. Design 5000 20 cp
A-opt. Design 5000 20 sdp

Table 3. Dataset A: Dataset used for serial experiments (see Section 8.2).

Problem N d ϵ

Conv. Approx. 100M 100 0.15
Adaboost 100M 100 0.004

D-opt. Design 20M 100 0.09
A-opt. Design 20M 100 0.19

Table 4. Dataset B: Dataset with N = O(10M) and d = 100, used for parallel
algorithms (see Sections 8.3 and 8.4).

Metrics. We use two metrics. The first is the objective F of each problem,
whose evolution we track as different algorithms progress. Our second metric
is tϵ, the minimum time for the algorithm to obtain a solution θ within an ϵ-
neighborhood of the optimal solution F (θ∗). As we do not know F (θ∗), we use
F (θ)− g(θ) ≤ F (θ∗) instead. More formally:

tϵ = min
{
t : F (θ(t))

F (θ(t))−g(θ(t)) ≤ 1 + ϵ
}
, (23)

where θ(t) denotes the obtained solution at time t. As F (θ) − g(θ) ≤ F (θ∗), tϵ
overestimates the time to convergence.

8.2. Serial Execution

Our first experiment compares the Serial FW algorithm with (a) the specialized
interior point solvers mentioned in Section 5 (i.e., cp, qp, sdp, and gp) and (b)
with Oracle FW, for each of the problems in Table 2. We use the small synthetic
dataset (Dataset A) in Table 3.

Problem N d ϵ

Conv. Approx. 500000 5000 0.13
Adaboost 500000 5000 0.003

D-opt. Design 100000 1000 0.03
A-opt. Design 100000 1000 0.09

Table 5. Dataset C: Dataset with N = O(100K) and d = 1K, used for parallel
algorithms (see Sections 8.3 and 8.4).
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Problem Dataset N d ϵ

D-opt. Design Movielens 137768 500 0.18
D-opt. Design HEPMASS 1M 38 0.04
D-opt. Design MSD 515345 90 0.01
D-opt. Design YAHOO 1,823,179 100 0.09
A-opt. Design YAHOO 1,823,179 100 0.17
Conv. Approx. YAHOO 1,823,178 100 0.03

Table 6. Real Datasets: Real-wold datasets used for parallel experiments in Sec-
tion 8.3.

(a) ConvexApproximation (b) AdaBoost

(c) D-OptimalDesign (d) A-OptimalDesign

Fig. 1. Values of the objective function generated by the algorithms as a function
of time over Dataset A. We see that Serial FW converges faster than interior point
methods. Comparing it to Oracle FW, the benefits of exploiting the common
information in serial computation are more pronounced for experimental design
objectives, where partial derivative computation is quadratic.

In each execution, we keep track of the objective function F as a function
of time elapsed. Unlike FW, the interior-point methods do not generate feasible
solutions at each iteration. Therefore, we project the solutions at each iteration
on the feasible set, and compute the objective F on the projected solution. The
time taken for the projection is not considered in time measurements; as such,
our plots underestimate the time taken by the interior-point algorithms.

Fig. 1 shows function values generated by the algorithms as a function of time.
Serial FW outperforms the interior-point methods, even when not accounting for
projections. The reason is that, in contrast to interior-point methods, the time
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Problem Dataset Speedup
vs.
Parallel
FW
with
P=1

Speedup
vs. Se-
rial
FW

Speedup
vs. Or-
acle
FW

# of cores

Conv. Approx. Dataset C 42 1.12 1.45 128
Conv. Approx. Dataset B 98 28.57 29.82 350
Conv. Approx. YAHOO 78 18.6 21.83 210

Adaboost Dataset C 45 1.24 2.07 128
Adaboost Dataset B 133 35.4 35.47 350

D-opt. Design Dataset C 48 12.7 112.3 128
D-opt. Design Dataset B 126 36.7 271.6 350
D-opt. Design HEPMASS 35 7.5 23.28 64
D-opt. Design Movielens 33 3.77 115.5 64
D-opt. Design MSD 35 6.52 37.24 64
D-opt. Design YAHOO 93 19 159.1 210
A-opt. Design Dataset C 49 10.5 125.07 128
A-opt. Design Dataset B 102 32.5 273.12 350
A-opt. Design YAHOO 90 20.3 164.95 210

Table 7. A summary of speedups (over three serial implementations) obtained
by parallel FW for each problem and dataset, along with the level of parallelism.
Beyond this number of cores, no significant speedup improvement is observed.

complexity of computations at each iteration of Serial FW is linearly dependent
on N . As a result, when d ≪ N , Serial FW is considerably faster, even though it
requires more iterations to converge. Note that the objective values generated by
interior-point methods are non-monotone, as these methods alternate between
improving feasibility and optimality. Comparing Serial FW to Oracle FW, the
benefits of exploiting the common information in serial computation are more
pronounced for experimental design objectives, where partial derivative compu-
tation is quadratic.

8.3. Effect of Parallelism

We compare the speedup of Parallel FW over three serial implementations. The
first is Parallel FW with P = 1, i.e., our parallel Spark code using only one
processor. The second is Serial FW, as described in Alg. 2; the third is Oracle FW,
which computes the gradient näıvely from scratch, not exploiting the common
information introduced in Prop. 1 and 2. We do not report results of serial
execution via CVXOPT, as the latter crashes with out-of-memory errors on all
these inputs. We execute 10 iterations of these serial implementations and then
estimate the total running time based on the average per-iteration running time;
all values reported correspond to the same number of iterations.

The measured speedups of Parallel FW over these serial implementations
are shown in Table 7. Increasing parallelism leads to significant speedups. For
example, using 350 compute cores, we can solve the 20M-variable instance of
D-optimal Design in 79 minutes, when Serial FW would take and 48.3 hours for
the same problem and input. Note that, even in serial implementation, exploiting
Properties 1-3 leads to accelarated execution: this is evident from the fact that
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(a) Dataset B (b) Dataset C

Fig. 2. tϵ as a function of the level of parallelism, measured in terms of cores
P . Fig. 2a shows results on the O(20M) variable dataset (Table 4) while Fig. 2b
shows results on the dataset with d = O(1000) (Table 5). We normalize tϵ by
its value at the lowest level of parallelism (13134s, 27420s, 11727s, and 11375s,
respectively, for each of the four problems in Fig. 2a and 487s, 486s, 2096s, and
4783s, respectively, in Fig. 2b). We see that increasing the level of parallelism
speeds up convergence.

the speedup over Oracle FW is considerably higher than over Serial FW. This is
more prominent in the two experimental design objectives: this is expected, as the
complexity of computing the gradient is O(Nd3), while by using the common
information we can compute the gradient in O(Nd2). For example, the same
20M-variable D-optimal instance would take more than 14 days for Oracle FW.

We note that, for the input sizes used in these experiments, the benefit of
parallelism saturates beyond 350 cores and 128 cores, for Datasets B and C,
respectively. The reason is that for this input size, after increasing the level of
parallelism beyond these values, the cost of computing the gradient at each core
becomes negligible.

We further illustrate the effect of increasing parallelism on two large-scale
synthetic datasets: Dataset B, a dataset with N = O(20M) and d = 100 (Ta-
ble 4), and Dataset C with N = O(100K) and d = O(1K) (Table 5). Fig. 2 shows
tϵ as a function of the level of parallelism, measured in terms of the number of
cores P , for each of the two datasets. We normalize tϵ by its value at P = 70
and P = 16, respectively. This lowest level of parallelism (P = 70 and P = 16)
is chosen so that the slowest execution time is moderate, i.e., approximately
10 hours. Figure 3 shows objective F , as a function of time for different levels
of parallelism. The highest level of parallelism (e.g., 350 for dataset B) is the
saturation point, beyond which no significant speedup is observed. By compar-
ing Figures 3a and 3b with Figures 3c and Figure 3d, we see that Parallel FW
converges much faster for Convex Approximation and Adaboost. The reason is
that the objective function in D-Optimal Design and A-optimal Design does not
have a bounded curvature; therefore, as mentioned in Section 4, FW for these
problems does not have a O( 1k ) convergence rate.

We also illustrate how parallelism affects performance on real datasets, sum-
marized in Table 6. For brevity, we only report D-Optimal Design for Movielens,
HEPMASS, and MSD datasets, and D-optimal design, A-optimal Design, and
Convex Approximation for the YAHOO dataset. Fig. 4 shows the measured tϵ
for different levels of parallelism. For each dataset, tϵ is normalized by the value
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(a) ConvexApproximation (b) AdaBoost

(c) D-OptimalDesign (d) A-OptimalDesign

Fig. 3. Objective F as a function of time over Dataset B. We see that increasing
the level of parallelism makes convergence faster. By comparing Figures 3a and
3b with Figures 3c and 3d, we see that FW for D-Optimal Design and A-Optimal
Design converges slower.

of tϵ for the lowest level of parallelism. Again, we see that we gain a significant
speedup by parallelism.

8.4. Subsampling the Gradient

In this section, we study the effect of subsampling the gradient on the perfor-
mance of FW. We have seen that parallelism reduces the cost of computation of
the gradients. An alternative is to compute the gradient stochastically by sub-
sampling only a few partial derivatives and using the minimal in this sub-sampled
set. This reduces the amount of computation occurring in each iteration. More-
over, such a stochastic estimation of the gradient still guarantees convergence
(Reddi et al. 2016), albeit at a slower rate. Therefore, subsampling decreases
the computation time for each iteration; this has a similar effect to increasing
parallelism, without incurring additional communication overhead. In contrast
to increasing parallelism, however, subsampling may also increase the number of
iterations till convergence.

We consider two variants of subsampling. In Sampled FW, we compute each
partial derivative ∂F

∂θi
with probability p. Then, we find the minimum among

the computed partial derivatives. Note that this speeds derivative computations:
at most p · N partial derivatives are computed, in expectation. In Smoothened
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Fig. 4. Summary of parallelism experiments on the real datasets. We normalize
tϵ by its value at the lowest level of parallelism (15247s, 3899s, and 4766s for
Movielens, MSD, and HEPMASS, respectively, in Fig. 4a, and 9888s, 7060s,
and 1302s for D-optimal Design, A-optimal Design, and Convex Approximation,
respectively, in Fig 4b.

(a) Sampled FW for D-OptimalDesign and
A-OptimalDesign

(b) Smoothened FW for D-OptimalDesign
and A-OptimalDesign

(c) Sampled FW for AdaBoost and Con-
vexApproximation

(d) Smoothened FW for AdaBoost and
ConvexApproximation

Fig. 5. Measured tϵ under Sampled and Smoothened FW, over Dataset C. We
normalize tϵ by the measured tϵ for 16 cores, which is reported in Fig. 2. By
comparing Figures 5a and 5c with Fig. 2b, subsampling does not match the
benefits of parallelism. In an ultra-low regime, e.g., p = 0.0005 convergence is
very slow. Smoothened FW can enhance the performance in this case.
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FW, we compute each partial derivative with probability p, but maintain an
exponentially-weighted moving average (EWMA) between the computed value
and past values: this estimate is used instead to compute the current minimum
partial derivative.

We use Dataset C (Table 5) in this experiment: we solve the corresponding
problems using Sampled FW and Smoothened FW on 16 cores. The results are
shown in Fig. 5. Values tϵ are normalized by tϵ for p = 1. This makes experiments
in Figures 5 and 2b comparable: each core computes the same number of partial
derivatives in expectation.

By comparing Figures 5 and 2b, we see that subsampling matches the ben-
efits of parallelism, at least for large p, for D-optimal and A-optimal design. In
contrast, the benefits of subsampling for Convex Approximation and AdaBoost
are almost negligible. This is because Parallel FW guarantees a O( 1k ) conver-
gence rate for these problems. As a result, though subsampling reduces the cost
of computation per iteration, the increase in number of iterations negates this
advantage. In fact, when p is in an ultra-low regime, e.g., p = 0.0005, Sampled
FW converges extremely slowly for all problems. Interestingly, Smoothened FW
performs better in this case, ameliorating the performance deterioration. This
is most evident in Figures 5d and 5c, where tϵ for Convex Approximation and
AdaBoost is considerably smaller under Smoothened FW.

8.5. LASSO Experiment

To show the performance of our algorithm on the cases beyond simplex con-
strained problems, we solve the LASSO problem (21). We compare our dis-
tributed FW with distributed ADMM.

The input data is synthetic and with N = 100, 000 and d = 1000. First, we
solve the following problem:

min
θ

1

2
∥X⊤θ − p∥22 + ∥θ∥1,

with distributed ADMM using 400 cores and for different values of ρ, which is
a parameter controlling convergence (see Section 8.3 of (Boyd et al. 2011)). We
then solve the LASSO with our Distributed FW algorithm, setting K equal to
the ℓ1 norm of the solution obtained by ADMM. For a fair comparison, we use
400 cores. Fig. 6 shows the value of the squared loss 1

2∥Xθ − p∥22 as a function
of time for FW and ADMM. As we see, FW outperforms ADMM.

9. Conclusion

We establish structural conditions under which FW admits a highly scalable
parallel implementation via map-reduce. FW has found recent applications in
non-convex optimization (Reddi et al. 2016), and a variant has been applied to
combinatorial optimization (Calinescu et al. 2011, Bian et al. 2017); exploring
the applicability of our approach in these areas is an important open problem.
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Fig. 6. Comparison between ADMM and our distributed Frank-Wolfe algorithm.
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